
Conclusion

The world state trie contains the mapping between addresses and account states.
The hash of the root node of the world state trie is included in a block (in
the stateRoot field) to represent the current state when that block was created. We only
have one world state trie.

1.

The account storage trie contains the data associated to a smart contract. The hash
of the root node of the Account storage trie is included in the sccount state (in
the storageRoot field). We have one Account storage trie for each account.

2.

The transaction trie contains all the transactions included in a block. The hash of the
root node of the Transaction trie is included in the block header (in
the transactionsRoot field). We have one transaction trie per block.

3.

The transaction receipt trie contains all the transaction receipts for the transactions
included in a block. The hash of the root node of the transaction receipts trie is included
in also included in the block header (in the receiptsRoot field); We have one transaction
receipts trie per block.

4.

Basically, Ethereum has 4 types of tries:

World state: the hard drive of the distributed computer that is Ethereum. It is a mapping
between addresses and account states.

1.

Account state: stores the state of each one of Ethereum's accounts. It also contains the
storageRoot of the account state trie, that contains the storage data for the account.

2.

Transaction: represents a state transition in the system. It can be a funds transfer, a
message call or a contract deployment.

3.

Block: contains the link to the previous block (parentHash) and contains a group of
transactions that, when executed, will yield the new state of the system. It also contains
the stateRoot, the transactionRoot and the receiptsRoot, the hash of the root nodes of
the world state trie, the transaction trie and the transaction receipts trie, respectively.

4.

And the objects that we discussed are:

116_005 Eth-3.1

 116_005 Eth-3.1 Page 1

https://ethereum.org/en/developers/docs/accounts/#externally-owned-accounts-eoas

An Ethereum account is an entity with an ether (ETH) balance that can send transactions on
Ethereum. Accounts can be user-controlled or deployed as smart contracts.
PREREQUISITES
To help you better understand this page, we recommend you first read through our introduction to
Ethereum.
ACCOUNT TYPES

Externally-owned account (EOA) – controlled by anyone with the private keys•
Contract account – a smart contract deployed to the network, controlled by code. Learn about smart

contracts

•

Ethereum has two account types:

WHAT IS A SMART CONTRACT?
A "smart contract" is simply a program that runs on the Ethereum blockchain. It's a collection of
code (its functions) and data (its state) that resides at a specific address on the Ethereum
blockchain.
Smart contracts are a type of Ethereum account. This means they have a balance and can be the
target of transactions. However they're not controlled by a user, instead they are deployed to the
network and run as programmed. User accounts can then interact with a smart contract by
submitting transactions that execute a function defined on the smart contract. Smart contracts can
define rules, like a regular contract, and automatically enforce them via the code. Smart contracts
cannot be deleted by default, and interactions with them are irreversible.
PREREQUISITES
If you're just getting started or looking for a less technical introduction, we recommend
our introduction to smart contracts.

From <https://ethereum.org/en/developers/docs/smart-contracts/>

 116_005 Eth-3.1 Page 2

https://ethereum.org/en/developers/docs/accounts/#externally-owned-accounts-eoas
https://ethereum.org/en/developers/docs/intro-to-ethereum/
https://ethereum.org/en/developers/docs/intro-to-ethereum/
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/accounts/
https://ethereum.org/en/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/

contracts

Receive, hold and send ETH and tokens•
Interact with deployed smart contracts•

Both account types have the ability to:

Key differences

Creating an account costs nothing•
Can initiate transactions•
Transactions between externally-owned accounts can only be ETH/token transfers•

Externally-owned

Made up of a cryptographic pair of keys: public and private keys that control account activities•

Creating a contract has a cost because you're using network storage and processors computations
resources

•

Can only send transactions in response to receiving a transaction•
Transactions from an external account to a contract account can trigger code which can execute
many different actions, such as transferring tokens or even creating a new contract or message
call

•

Contract accounts don't have private keys. Instead, they are controlled by the logic of the smart
contract code

•

Contract

AN ACCOUNT EXAMINED

nonce – A counter that indicates the number of transactions sent from an externally-owned account or
the number of contracts created by a contract account. Only one transaction with a given nonce can be
executed for each account, protecting against replay attacks where signed transactions are repeatedly
broadcast and re-executed.

•

balance – The number of wei owned by this address. Wei is a denomination of ETH and there are 1e+18
wei per ETH.

•

codeHash – This hash refers to the code of an account on the Ethereum virtual machine (EVM).

Contract accounts have code fragments programmed in that can perform different operations. This
EVM code gets executed if the account gets a message call. It cannot be changed, unlike the
other account fields. All such code fragments are contained in the state database under their
corresponding hashes for later retrieval. This hash value is known as a codeHash. For externally
owned accounts, the codeHash field is the hash of an empty string.

•

storageRoot – Sometimes known as a storage hash. A 256-bit hash of the root node of a Merkle Patricia
trie that encodes the storage contents of the account (a mapping between 256-bit integer values), encoded
into the trie as a mapping from the Keccak 256-bit hash of the 256-bit integer keys to the RLP-encoded 256-
bit integer values. This trie encodes the hash of the storage contents of this account, and is empty by
default.

•

Ethereum accounts have four fields:

 116_005 Eth-3.1 Page 3

https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/

https://ethereum.org/en/smart-contracts/

Smart contracts are the fundamental building blocks of Ethereum's application layer. They are
computer programs stored on the blockchain that follow "if this then that" logic, and are guaranteed
to execute according to the rules defined by its code, which cannot be changed once created.
Nick Szabo coined the term "smart contract". In 1994, he wrote an introduction to the
concept(opens in a new tab), and in 1996 he wrote an exploration of what smart contracts could
do(opens in a new tab).
Szabo envisioned a digital marketplace where automatic, cryptographically-secure processes
enable transactions and business functions to happen without trusted intermediaries. Smart
contracts on Ethereum put this vision into practice.
Trust in conventional contracts
One of the biggest problems with a traditional contract is the need for trusted individuals to follow
through with the contract's outcomes.
Here is an example:
Alice and Bob are having a bicycle race. Let's say Alice bets Bob $10 that she will win the race. Bob
is confident he'll be the winner and agrees to the bet. In the end, Alice finishes the race well ahead
of Bob and is the clear winner. But Bob refuses to pay out on the bet, claiming Alice must have
cheated.
This silly example illustrates the problem with any non-smart agreement. Even if the conditions of
the agreement get met (i.e. you are the winner of the race), you must still trust another person to
fulfill the agreement (i.e. payout on the bet).
A digital vending machine

You select a product•
The vending machine displays the price•
You pay the price•
The vending machine verifies that you paid the right amount•
The vending machine gives you your item and change•

A simple metaphor for a smart contract is a vending machine, which works somewhat similarly to a
smart contract - specific inputs guarantee predetermined outputs.

The vending machine will only dispense your desired product after all requirements are met. If you

 116_005 Eth-3.1 Page 4

https://ethereum.org/en/smart-contracts/
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html

The vending machine will only dispense your desired product after all requirements are met. If you
don't select a product or insert enough money, the vending machine won't give out your product.

Perhaps the best metaphor for a smart contract is a vending machine, as described by Nick Szabo(opens in a
new tab). With the right inputs, a certain output is guaranteed.
To get a snack from a vending machine:

1 money + snack selection = snack dispensed
2
This logic is programmed into the vending machine.
A smart contract, like a vending machine, has logic programmed into it. Here's a simple example of how this
vending machine would look if it were a smart contract written in Solidity:

From <https://ethereum.org/en/developers/docs/smart-contracts/>

pragma solidity 0.8.7;
2
3contract VendingMachine {
4
5 // Declare state variables of the contract
6 address public owner;
7 mapping (address => uint) public cupcakeBalances;
8
9 // When 'VendingMachine' contract is deployed:
10 // 1. set the deploying address as the owner of the contract
11 // 2. set the deployed smart contract's cupcake balance to 100
12 constructor() {
13 owner = msg.sender;
14 cupcakeBalances[address(this)] = 100;
15 }
16
17 // Allow the owner to increase the smart contract's cupcake balance
18 function refill(uint amount) public {
19 require(msg.sender == owner, "Only the owner can refill.");
20 cupcakeBalances[address(this)] += amount;
21 }
22
23 // Allow anyone to purchase cupcakes
24 function purchase(uint amount) public payable {
25 require(msg.value >= amount * 1 ether, "You must pay at least 1 ETH per cupcake");
26 require(cupcakeBalances[address(this)] >= amount, "Not enough cupcakes in stock to complete this
purchase");
27 cupcakeBalances[address(this)] -= amount;
28 cupcakeBalances[msg.sender] += amount;
29 }
30}

PERMISSIONLESS
Anyone can write a smart contract and deploy it to the network. You just need to learn how to code in a smart

Like how a vending machine removes the need for a vendor employee, smart contracts can replace intermediaries in
many industries.

 116_005 Eth-3.1 Page 5

https://unenumerated.blogspot.com/
https://unenumerated.blogspot.com/
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://ethereum.org/en/developers/docs/gas/

Automatic execution
The main benefit of a smart contract is that it deterministically executes unambiguous code when
certain conditions are met. There is no need to wait for a human to interpret or negotiate the result.
This removes the need for trusted intermediaries.
For example, you could write a smart contract that holds funds in escrow for a child, allowing them
to withdraw funds after a specific date. If they try to withdraw before that date, the smart contract
won't execute. Or you could write a contract that automatically gives you a digital version of a car's
title when you pay the dealer.
Predictable outcomes
Traditional contracts are ambiguous because they rely on humans to interpret and implement them.
For example, two judges might interpret a contract differently, which could lead to inconsistent
decisions and unequal outcomes. Smart contracts remove this possibility. Instead, smart contracts
execute precisely based on the conditions written within the contract's code. This precision means
that given the same circumstances, the smart contract will produce the same result.
Public record
Smart contracts are useful for audits and tracking. Since Ethereum smart contracts are on a public

Anyone can write a smart contract and deploy it to the network. You just need to learn how to code in a smart
contract language, and have enough ETH to deploy your contract. Deploying a smart contract is technically a
transaction, so you need to pay gas in the same way you need to pay gas for a simple ETH transfer. However,
gas costs for contract deployment are far higher.

Solidity•
Vyper•

Ethereum has developer-friendly languages for writing smart contracts:

COMPOSABILITY
Smart contracts are public on Ethereum and can be thought of as open APIs. This means you can call other
smart contracts in your own smart contract to greatly extend what's possible. Contracts can even deploy other
contracts.
Learn more about smart contract composability.
LIMITATIONS
Smart contracts alone cannot get information about "real-world" events because they can't retrieve data from
off-chain sources. This means they can't respond to events in the real world. This is by design. Relying on
external information could jeopardise consensus, which is important for security and decentralization.
However, it is important for blockchain applications to be able to use off-chain data. The solution
is oracles which are tools that ingest off-chain data and make it available to smart contracts.
Another limitation of smart contracts is the maximum contract size. A smart contract can be a maximum of
24KB or it will run out of gas. This can be circumnavigated by using The Diamond Pattern(opens in a new
tab).
MULTISIG CONTRACTS
Multisig (multiple-signature) contracts are smart contract accounts that require multiple valid signatures to
execute a transaction. This is very useful for avoiding single points of failure for contracts holding substantial
amounts of ether or other tokens. Multisigs also divide responsibility for contract execution and key
management between multiple parties and prevent the loss of a single private key leading to irreversible loss
of funds. For these reasons, multisig contracts can be used for simple DAO governance. Multisigs Threshold
require N signatures out of M possible acceptable signatures (where N ≤M, and M > 1) in order to execute. N =

3, M = 5 and N = 4, M = 7 are commonly used. A 4/7 multisig requires four out of seven possible valid
signatures. This means the funds are still retrievable even if three signatures are lost. In this case, it also
means that the majority of key-holders must agree and sign in order for the contract to execute.
SMART CONTRACT RESOURCES

openzeppelin.com/contracts/(opens in a new tab)•
GitHub(opens in a new tab)•
Community Forum(opens in a new tab)•

OpenZeppelin Contracts - Library for secure smart contract development.

 116_005 Eth-3.1 Page 6

https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/smart-contracts/composability/
https://ethereum.org/en/developers/docs/oracles/
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-2535
https://openzeppelin.com/contracts/
https://github.com/OpenZeppelin/openzeppelin-contracts
https://forum.openzeppelin.com/c/general/16

Smart contracts are useful for audits and tracking. Since Ethereum smart contracts are on a public
blockchain, anyone can instantly track asset transfers and other related information. For example,
you can check to see that someone sent money to your address.

Till this place

 116_005 Eth-3.1 Page 7

